Weak Reflection Principle, Saturation of NS and Diamonds

Victor TORRES

University of Paris 7 Hejnice, Czech Republic

January 30th-February 6th, 2010

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Stationary sets in two cardinals version

Definition We say that a set $S \subseteq [\lambda]^{\mu}$ is stationary if for every function $f : \lambda^{<\omega} \to \lambda$, there is $X \in S$ such that $f[X^{<\omega}] \subseteq X$.

Weak Reflection Principle

Definition (WRP(λ))

Let $\lambda \geq \aleph_2$ be an arbitrary ordinal. If $S \subseteq [\lambda]^{\omega}$ is a stationary set (in $[\lambda]^{\omega}$), then the set

$$\{x \in [\lambda]^{\omega_1} : x \supseteq \omega_1 \text{ and } S \cap [x]^{\omega} \text{ is stationary in } [x]^{\omega}\}$$

is stationary in $[\lambda]^{\omega_1}$. So WRP states that WRP(λ) holds for every $\lambda \geq \aleph_2$.

Definition (Saturation of NS_{ω_1})

Let W be a collection of stationary sets in ω_1 such that for every S and T in W, $S \cap T$ is nonstationary. Then $|W| \le \omega_1$.

Some consequences of WRP

- 1. WRP implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević 1984).
- 2. WRP implies SPFA is equivalent to MM (Foreman-Magidor-Shelah 1988).
- 3. WRP does not imply $\aleph_2^{\aleph_1} = \aleph_2$ (Woodin 1999).
- 4. WRP implies SCH (Shelah, 2008).

向下 イヨト イヨト

Diamond in two cardinals version

Definition

Let $\langle \mathscr{G}_Z
angle_{Z \in [\lambda]^{\mu}}$ be a sequence such that $\mathscr{G}_Z \subseteq P(Z)$ and

 $|\mathscr{G}_{\mathsf{Z}}| \leq \mu$

for all $Z \in [\lambda]^{\mu}$. Then $\langle \mathscr{G}_Z \rangle_{Z \in [\lambda]^{\mu}}$ is a $\Diamond_{[\lambda]^{\mu}}$ -sequence if for all $W \subseteq \lambda$, the set

 $\{Z\in [\lambda]^{\mu}: W\cap Z\in \mathscr{G}_{Z}\}$

is stationary. The principle $\Diamond_{[\lambda]^{\mu}}$ states that there is a $\Diamond_{[\lambda]^{\mu}}\text{-sequence.}$

(日本) (日本) (日本)

Main theorem

Theorem

For every ordinal $\lambda \geq \omega_2$, saturation of the ideal NS_{ω_1} and $WRP(\lambda)$ imply $\Diamond_{[\lambda]^{\omega_1}}$. In particular, it implies $\Diamond_{\omega_2}(\{\delta < \omega_2 : \operatorname{cof} \delta = \omega_1\}).$

回 とう ほ とう きょう

Building the sequence...

We will use the following theorem of Todorčević:

Theorem $\Diamond_{[\lambda]^{\omega}}$ holds for every ordinal $\lambda \ge \omega_2$. In fact, we shall also rely on the definition of $\Diamond_{[\lambda]^{\omega}}$.

Building the sequence...

Let $\langle \theta_a \rangle_{a \in [\lambda]^{\omega}}$ be a fixed a $\langle [\lambda]^{\omega}$ -sequence. We also fix for each $x \in [\lambda]^{\omega_1}$ a \subseteq -continuous increasing chain $\langle a_{\xi}^x \rangle_{\xi < \omega_1}$ of countable sets such that $x = \bigcup_{\xi < \omega_1} a_{\xi}^x$. Let $T_x = \langle \{a_{\xi}^x\}_{\xi < \omega_1}, <_x \rangle$ be the associated tree where the ordering is as follows: $a_{\xi}^x <_x a_{\xi'}^x$ iff $\xi < \xi'$ and $\theta_{a_{\xi'}^x} \cap a_{\xi}^x = \theta_{a_{\xi'}^x}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Building the sequence...

Take $S \subseteq \omega_1$ with the property that

$$\{a_{\xi}^{\mathsf{x}}:\xi\in S\}$$

is a chain in the tree order. For each S with this property, let

$$F_{\mathcal{S}}^{\mathsf{x}} = \bigcup_{\xi \in \mathcal{S}} \theta_{\mathsf{a}_{\xi}^{\mathsf{x}}}.$$

イロン 不同 とうほう 不同 とう

Э

Definitions Main Theorem

Building the sequence...

Now, consider

 $\mathscr{S}_x = \{F_S^x : S \text{ is stationary in } \omega_1 \text{ and } \langle a_\xi^x \rangle_{\xi \in S} \text{ is a } <_x\text{-chain} \}.$

<ロ> (四) (四) (三) (三) (三)

Claim Saturation of NS_{ω_1} implies that $|\mathscr{S}_x| \leq \omega_1$.

イロン イヨン イヨン イヨン

= 990

Claim WRP implies $\langle \mathscr{S}_x \rangle_{x \in [\lambda]^{\omega_1}}$ is a $\Diamond_{[\lambda]^{\omega_1}}$ -sequence. In particular, it implies $\Diamond_{\omega_2}(\{\delta < \omega_2 : \operatorname{cof} \delta = \omega_1\}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Э